
Prognostic Testing in Uveal Melanoma by
Transcriptomic Profiling of Fine Needle Biopsy
Specimens

Michael D. Onken,* Lori A. Worley,*
Rosa M. Dávila,† Devron H. Char,‡ and
J. William Harbour*
From the Departments of Ophthalmology & Visual Sciences* and

Pathology & Immunology,† Washington University School of

Medicine, St. Louis, Missouri; and the Tumori Foundation,‡ San

Francisco, California

Many uveal melanoma patients die of metastasis de-
spite ocular treatment. Transcriptomic profiling of
enucleated tumors can identify patients at high met-
astatic risk. Because most uveal melanomas do not
require enucleation, a biopsy would be required for
this analysis. Here, we establish the feasibility of tran-
scriptomic analysis of uveal melanomas from fine
needle aspirates. Transcriptomic profiles were ana-
lyzed from postenucleation “mock” needle biopsies
and matching tumors from eight enucleated eyes and
from fine needle aspirates in 17 uveal melanomas
before radiotherapy. Predictive accuracy was assessed
using a weighted voting classifier optimized for probe
set selection using a minimal redundancy/maximum
relevance algorithm. Transcriptomic profiles from
mock biopsies were highly similar to those from their
matching tumor samples (P < 0.0001). Transcrip-
tomic profiles from fine needle aspirates clustered
into two classes with discriminating probe sets that
overlapped significantly with those for our published
classification (P < 0.00001). No loss of predictive ac-
curacy was identified among eight needle aspirates
obtained from a distant location. Thus, it is feasible to
obtain RNA of adequate quality and quantity to perform
transcriptomic analysis on uveal melanoma samples
obtained by fine needle biopsy. This method can be
applied to specimens obtained from distant geographic
locations and can stratify uveal melanoma patients
based on metastatic risk. (J Mol Diagn 2006, 8:567–573;
DOI: 10.2353/jmoldx.2006.060077)

Uveal melanoma is the most common primary cancer of
the eye and has a strong predilection for hematogenous
metastasis to the liver.1 Our laboratory and others have
described a highly robust transcriptomic classification of
uveal melanomas based on RNA analysis of primary
tumors.2,3 The class 1 signature was associated with an

excellent prognosis, whereas the class 2 signature por-
tended a high risk of metastatic death.2 We showed that
the class 2 signature was strongly associated with other
predictors of poor prognosis, such as epithelioid cytol-
ogy, looping extracellular matrix patterns, and monosomy
32,4; in addition, class 2 tumors exhibited a shift from a
neural crest/melanocyte phenotype to an epithelial-like
phenotype.5 This molecular classification represents a
potentially valuable prognostic tool to identify high-risk
patients and to treat micrometastatic disease before
overt clinical presentation. Transcriptomic profiling has
been reported only on larger pieces of uveal melanoma
tissue obtained at enucleation. Enucleation is performed
in only approximately 10% of uveal melanoma patients.
For the remaining �90% of patients who are treated with
globe-sparing modalities, such as radiotherapy,1 tran-
scriptomic profiling would be more useful if it could be
performed on fine needle aspirates before eye-sparing
treatments.

There were a number of possible obstacles to the
successful transfer of transcription-based classifications
to a biopsy platform. Because intraocular biopsy requires
a very small needle size (25-gauge),6 it was unclear
whether the material obtained would be sufficient for
microarray-based transcriptomic profiling. In addition,
the effects of the small needle size on sampling errors
were unknown. Furthermore, the methodological differ-
ences in the preparation of RNA from solid tumor tissue
versus fine needle aspirates could affect the measure-
ment of RNA transcripts. The purpose of this study was to
explore the feasibility of transcription-based classification
of uveal melanomas using fine needle aspirates.
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Materials and Methods

Preparation of RNA Samples

All studies were approved by the Human Studies Com-
mittee at Washington University, and informed consent
was obtained from each subject. Fine needle biopsies
were performed using a 25-gauge needle on uveal mel-
anomas before radiotherapy as previously described.6

Fine needle aspirates were divided into samples for cy-
tologic diagnosis and RNA analysis. The samples for
RNA analysis were expelled into an empty RNase-free
tube in the operating room. The empty syringe was filled
with 200 �l of extraction buffer from the PicoPure RNA
isolation kit (Arcturus, Mountain View, CA), which was
then transferred to the same tube to collect any additional
tumor cells lodged in the needle hub. The contents of the
tube were incubated at 42°C for 30 minutes. Immediately
following enucleation, and before opening the eye, mock
biopsies were obtained through the sclera in a fashion
identical to the actual biopsies. The eye was then
opened, and a large piece of matching tumor tissue was
obtained, snap frozen, and prepared for RNA analysis as
previously described.2 RNA was isolated using the Pico-
Pure kit (including the optional DNase step), which
yielded about 100 ng to 1.5 �g of total RNA per aspirate
using the NanoDrop 1000 system (Wilmington, DE). RNA
samples were stored at �80°C until sent to the Siteman
Cancer Center Gene Chip Facility for amplification using
the Affymetrix Genechip 3� Amplification 2-Cycle cDNA
Synthesis Kit (Affymetrix, Santa Clara, CA). Amplified
cDNA samples were hybridized overnight to Hu133Av2
chips in the Genechip Hybridization Oven Model 640.
Chips were washed using the GeneChip Fluidics station
450, and gene expression measured on the Affymetrix
Genechip Scanner. For specimens sent to St. Louis from
San Francisco, tubes were placed on dry ice and mailed
by overnight courier, after which they were incubated at
42°C for 30 minutes and handled as described for the
other biopsy samples. No RNA degradation was ob-
served for these samples.

Analysis of Microarray Expression Profiles

All new transcriptomic profiles obtained on Hu133Av2
chips and our previous profiles obtained on Hu133A
chips2 were normalized by Robust Multiarray Averaging
using RMAexpress (http://rmaexpress.bmbolstad.com).
The Tschentscher dataset obtained on HG-U95Av2
chips3 was kindly provided by the authors and was not
normalized with RMA. For all analyses except minimal
redundancy/maximal relevance (mRMR), expression
data were log2 transformed. Probe sets were filtered for a
median significance P value �0.05 and gene expression
variance �1 across all specimens (to eliminate genes
that did not vary substantially between tumors). Hierar-
chical clustering was performed with Dchip (http://
biosun1.harvard.edu/complab/dchip/) using 1-correlation
for the distance metric, centroid linkage method, and
gene ordering by cluster tightness. Probe sets were
ranked for ability to discriminate tumor classes by

signal-to-noise algorithm using GeneCluster2 software
(http: //www.broad.mit.edu/cancer/software/genecluster2/
gc2.html), which was also used to generate a predictive
test using a weighted voting algorithm. Class predictions
were analyzed by leave-one-out cross validation. Confi-
dence scores were calculated by GeneCluster software
as described.7 Rank order of discriminating probe sets to
be entered stepwise into the predictive test for cross
validation were determined with mRMR software (http://
miracle.lbl.gov/proj/mRMR/), using mutual information dif-
ference as the feature selection scheme and �0.5 stan-
dard deviations as a threshold for discretizing expression
values. Significance of discriminating probe set overlap
was determined using hypergeometric probability using
the PROBHYBR function of SAS 9.0 statistical software
(SAS Institute, Cary, NC) as previously described.8

Results

Analysis of RNA from Ocular Biopsy Specimens

The study goal was to evaluate the feasibility of molecular
prognostic testing in uveal melanomas using transcrip-
tomic profiles from fine needle biopsy specimens. We
used a series of statistical techniques to analyze four
independent transcriptomic profile datasets derived from
1) eight uveal melanomas obtained at eye removal (de-
noted by the prefix MM) and eight mock needle biopsy
samples from the same tumors (denoted MB), 2) 17 fine
needle biopsies of uveal melanomas before radiotherapy
(denoted NB), 3) 22 uveal melanomas from our original
published dataset (denoted OrigMM),2 and 4) 20 uveal
melanomas published by another laboratory (denoted
Tschentscher).3 The study design is summarized in Fig-
ure 1. Clinical and pathological features are summarized
in Table 1 and detailed in Supplementary Table S1 (see
supplemental material at http://jmd.amjpathol.org). To
conserve the small amounts of RNA obtained from the
needle aspirates, RNA concentrations were not mea-
sured directly, but rather, the RNA quality and hybridiza-
tion characteristics were assessed by the background
score and scaling factor supplied by the Affymetrix soft-
ware. The background score, an indicator of nonspecific
binding to the array, was only slightly higher for the NB

Figure 1. Overview of study design.
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group (mean, 2.3 units � 0.1 SE) compared with the MB
group (mean, 1.7 units � 0.04 SE) and the MM group
(mean, 1.6 units � 0.07 SE). The scaling factor, a multi-
plication function that is inversely proportional to the over-
all chip hybridization signal intensity, was lower for the
NB group (mean, 9.6 units � 2.2 SE) compared with the
MB group (mean, 17.5 units � 4.9 SE) and the MM group
(mean, 13.1 units � 0.8 SE). Therefore, the NB chips
exhibited good hybridization characteristics with accept-
able background, indicating that the fine needle aspi-
rates yielded RNA of adequate quantity and quality for
direct transcriptomic profiling. Of note, eight specimens
obtained from the San Francisco location and shipped to
St. Louis showed no decrease in RNA quality or hybrid-
ization characteristics compared with the St. Louis
specimens.

Assessment of Sampling Error Using
Postenucleation Mock Biopsy Specimens

The possibility that tumor cells obtained in a biopsy spec-
imen may not be representative of the entire tumor is a
concern with the small amount of material obtained from
intraocular biopsies.9 We evaluated the similarity of tran-
scriptomic profiles between the 16 MM and MB samples
using unsupervised hierarchical clustering. Because the
MM samples represented about 25% of the total tumor
volume, they were assumed to represent adequately the
overall transcriptomic profile of the tumor. Probe sets
were filtered for a median significance P value �0.05 and
gene expression variance �1 across all specimens (to
eliminate genes that did not vary substantially between
tumors), which resulted in 806 probe sets. For each MB
specimen, the matching MM specimen demonstrated the
shortest linkage distance (ie, the most similar transcrip-
tomic profile) (Figure 2), indicating that each MB was
more similar to its paired MM than to any of the other MB
or MM specimens (P � 0.0001). This similarity was re-
markable, considering the relative homogeneity in gene
expression between allogeneic uveal melanomas and the
methodological differences in RNA preparation for the
MM versus the MB samples. These results show that
transcriptomic profiles obtained from fine needle aspi-
rates closely approximate larger tumor samples from

which they originate and that sampling error is unlikely to
represent an obstacle to biopsy-based transcriptomic
profiling in uveal melanoma.

Supervised Analysis of Matched Mock Biopsy/
Solid Tumor Samples

Hierarchical clustering of the MM and MB samples also
revealed a higher order of tumor aggregation into two
groups of six and 10 specimens each (Figure 2). Self-
organizing maps, another unsupervised analytical tech-
nique, grouped the specimens into the same clusters
(data not shown). To determine whether the dichotomous
clustering of MM-MB specimens may correspond to the
prognostically validated class 1 and class 2 designations

Figure 2. Heat maps showing unsupervised hierarchical clustering of uveal
malignant melanomas (MM), matching mock biopsy specimens (MB), and
needle biopsy specimens (NB) using 806 probe sets filtered for a median
significance P value �0.05 and gene expression variance �1.

Table 1. Summary of Clinical-Pathologic Features

Feature

Datasets

OrigMM MM-MB NB

Mean age (range) 61 (25–82) 59 (37–74) 60 (25–88)
Mean largest tumor diameter, millimeters (range) 18 (10–26) 17 (10–22) 13 (5–18)
Mean tumor thickness, millimeters (range) 10 (4–16) 10 (5–14) 9 (3–18)
Tumor location Anterior, 9 (41%) Anterior, 5 (63%) Anterior, 8 (47%)

Posterior, 13 (59%) Posterior, 3 (37%) Posterior, 9 (53%)
Cytology Spindle, 8 (36%) Spindle, 2 (25%) Spindle, 6 (35%)

Mixed, 8 (36%) Mixed, 2 (25%) Mixed, 4 (24%)
Epithelioid, 6 (27%) Epithelioid, 4 (50%) Epithelioid, 4 (24%)

Not available, 3 (17%)
Molecular class Class 1, 14 (64%) Class 1, 3 (37%) Class 1, 9 (53%)

Class 2, 8 (36%) Class 2, 5 (63%) Class 2, 8 (47%)
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previously described in the OrigMM dataset,2 we com-
pared the discriminating probe sets for the two datasets.
For this analysis, we filtered the probe sets for a median
significance P value �0.05 and included the top 5000
most variable probe sets. Discriminating probe sets were
generated for both datasets using the Marker Selection
algorithm of the GeneCluster2 software.7 The distance
function was prescribed by the signal-to-noise metric and
the class estimate by median gene expression. The 400
top-ranked probe sets from each dataset were compared
with each other for overlap. A highly significant overlap of
118 concordant probe sets was observed between the
MM-MB and origMM lists (P � 0.00001) (Figure 3A).
These findings suggest that the transcriptomic profiles
obtained from the MM-MB dataset correspond to the
prognostically significant tumor classes identified with
the origMM dataset, and they demonstrate the feasibility
of molecular prognostic testing in uveal melanoma based
on fine needle aspirates.

Analysis of Needle Biopsy Samples

Needle biopsy (NB) specimens were obtained at two
locations (nine from St. Louis and eight from San Fran-
cisco) and processed at the Washington University site.
The 17 samples were normalized together using RMA
and then filtered for median significance P value �0.05
and gene expression variance �1 across all specimens.
Hierarchical clustering identified two tumor groups of
eight and nine specimens (Figure 2). The same dichoto-
mous clustering was observed with self-organizing maps
(data not shown). These results were consistent with
those obtained with the origMM, MM, and MB datasets,
and they suggested that the NB specimens segregated
into prognostically significant classes based on tran-
scriptomic profile. To support this interpretation, we com-
pared the discriminating gene list with those from the
MM-MB and origMM datasets. As described above for
the MM-MB dataset, we filtered the NB dataset for probe
sets with median significance P value �0.05, included
the top 5000 most variable probe sets, and performed
Marker Selection using the signal-to-noise metric and the
class estimate by median gene expression. The 400 top-
ranked probe sets were then compared with the MM-MB
and origMM datasets. There was a highly significant
overlap of 100 concordant probe sets between the NB
and MM-MB datasets and an even more significant over-
lap of 124 probe sets between the NB and origMM data-
sets (for both comparisons, P � 0.00001) (Figure 3A).
Importantly, epithelioid cytology was strongly associated
with the class 2 molecular profile in the OrigMM and
MM-MB datasets, where enucleation specimens were
available for histopathological assessment (P � 0.0001),
but this association was less evident when cytology was
assessed from biopsy specimens alone in the NB dataset
(P � 0.24). In fact, three cases where the biopsy sample
was insufficient for accurate cytologic diagnosis (NB3,
NB4, and NB16) nevertheless provided sufficient material
for accurate molecular profiling. This ability to use ex-
tremely small amounts of tumor material highlights a po-
tential advantage of molecular profiling.

Development of a Predictive Model

To identify a feature set (group of probe sets) that was
sufficiently robust to classify individual tumors accurately
from any of our datasets (OrigMM, MM-MB, and NB), we
took the intersection of the three discriminating probe set
lists, which resulted in 51 probe sets, which was further
reduced to 45 probe sets after eliminating six that had a
fold change �1.5 in one or more datasets (Figure 3, A
and B, and Supplementary Table S2—see supplemental
material at http://jmd.amjpathol.org). All tumors from all
three datasets were grouped correctly by hierarchical
clustering and principal component analysis using only
the information contained in the 45-probe set list (Figure
3, C and D).

To validate further this feature set, we analyzed an
independent dataset published by Tschentscher et al, in
which an association was shown between transcriptomic
profile and monosomy 3, a strong predictor of metasta-
sis.3 Using the Affymetrix “Best Match” file, we were able
to identify matches for 25 of our 45 probe sets from this
dataset, which was generated using the HG-U95Av2
chip. The expression data, which were presented as fold
change, were normalized to mean � 0 and unit variance.
Unsupervised hierarchical clustering and principal com-
ponent analysis using these 25 probe sets correctly
grouped all tumors according to chromosome 3 status
(Figure 3, C and D). Thus, a small feature set can accu-
rately classify a broad range of uveal melanomas from
whole-tissue and biopsy specimens.

We then tested the performance of this feature set in a
predictive model by entering the probe sets stepwise in a
random fashion into a weighted voting algorithm and
evaluating class assignment by leave-one-out cross-val-
idation using GeneCluster software. The predictor cor-
rectly classified all tumors with 15 probe sets for the NB
dataset, eight for the MM-MB dataset, one for the OrigMM
dataset, and nine for the Tschentscher dataset (Figure 4).
The number of probe sets required for class assignment
was reduced even further by ranking them for minimal
redundancy and maximal relevance using the mRMR
algorithm10 and entering them stepwise into the predic-
tor. Using this technique, all of the tumors were classified
correctly with as few as one probe set for the NB dataset,
two for the MM-MB dataset, one for the OrigMM dataset,
and six for the Tschentscher dataset (Figure 4).

Discussion

This study supports the feasibility of prognostic testing in
uveal melanoma by transcriptomic profiling of fine needle
biopsy specimens. These results show that RNA of suffi-
cient quantity and quality can be obtained from fine needle
ocular aspirates to generate microarray-based transcrip-
tomic profiles that closely resemble those obtained from
large tissue sections from the same tumor. Furthermore, we
show that accurate molecular profiles can be obtained from
extremely small biopsy samples that cannot be assessed
confidently by cytologic examination alone. These studies
also demonstrate that RNA from fine needle aspirates can
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Figure 3. A: Venn diagram showing concordant probe sets between the NB, MM-MB, and origMM datasets. B: Comparison of GenChip expression units for the
45-probe set list in the indicated datasets. C: Hierarchical clustering and (D) principal component analysis of the indicated datasets using the 45-probe-set list
(blue spheres, class 1 tumors; red spheres, class 2 tumors). The two classes indicated in the Tschentscher dataset refer to monosomy versus disomy for chro-
mosome 3.
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be shipped safely to distant locations before processing,
which would be required for large-scale clinical testing and
multicenter trials. Although the short time frame of our study
did not allow us to assess directly whether transcriptomic
profiles obtained from fine needle aspirates could predict
metastasis, several lines of evidence suggest that this is the
case. First, the list of discriminating probe sets that as-
signed NB samples to the correct class was highly similar to
that for the OrigMM dataset in which class label associated
strongly with metastatic death.2 This technique of compar-
ing probe sets rather than raw expression data allowed us
to compare datasets generated at different times using
different array platforms. Second, the discriminating probe
sets from the NB samples could be used to classify tumors
by chromosome 3 status (Tschenstcher dataset) and met-
astatic death (OrigMM dataset). Ultimately, the prognostic

value of biopsy-derived transcriptomic profiles will require a
prospective study, and the feasibility of conducting such a
study is established by our results.

This study also demonstrates effective strategies for
reducing three sources of error in transcriptome-based
machine learning and predictive testing: overfitting, re-
dundancy, and instability of predictive feature sets.10,11

The impact of overfitting (the degree to which a predictive
model is representative of the tumors used to train the
model but not of all tumors on which the predictor may be
applied), can be reduced by applying the predictor to
multiple independent datasets.11 Hence, we have filtered
and cross-validated our feature set and predictive model
through four independent datasets (NB, MM-MB,
OrigMM, and Tschentscher). Classification accuracy can
also be affected adversely by feature set redundancy

Figure 4. Predictive model for classifying tumor samples for the indicated datasets. The predictive model was evaluated for class assignment by transcriptome
signature in all datasets except the Tschentscher dataset, which was evaluated for monosomy 3. Probe sets were entered randomly (�mRMR) or by minimum
redundancy and maximum relevance (�mRMR) into a weighted voting algorithm. Classification errors calculated by leave-one-out cross-validation are plotted on
the upper graph. The mean and minimum confidence scores are plotted on the lower graph.
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(the tendency for multiple genes in a feature set to pro-
vide overlapping predictive information), which can be
addressed using algorithms such as mRMR to eliminate
redundant features and to retain those with maximal pre-
dictive power.10 In each of our four datasets, mRMR
allowed us to reduce substantially the number of probe
sets in the predictive model without sacrificing accuracy.
Feature set instability (the tendency for feature sets to
vary between independent datasets) has been a major
obstacle to transcriptome-based clinical testing and has
led to the suggestion that feature selection should be
approached as a process of finding groups of potential
feature sets, rather than a single “best” feature set.12 In
fact, a third of the top 15 probe sets ranked by mRMR
appeared in only one dataset, and only one appeared in
all three datasets, making it unlikely that a single marker
will be found that contains the full predictive information
of a refined feature set.

In summary, we have identified a list of 45 probe sets
from the intersection of class discriminators in three dif-
ferent datasets to provide a pool of features that can be
used to classify future datasets, thereby laying the
groundwork for a clinical test that can be validated pro-
spectively in a multicenter study to guide management of
individual uveal melanoma patients. Following prospec-
tive validation, this prognostic assay could improve sub-
stantially the management of uveal melanoma patients by
identifying and treating high-risk patients before overt
presentation of metastatic disease.
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