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Uveal (ocular) melanoma is an aggressive cancer that
often forms undetectable micrometastases before di-
agnosis of the primary tumor. These micrometastases
later multiply to generate metastatic tumors that are
resistant to therapy and are uniformly fatal. We have
previously identified a gene expression profile de-
rived from the primary tumor that is extremely accu-
rate for identifying patients at high risk of metastatic
disease. Development of a practical clinically feasible
platform for analyzing this expression profile would
benefit high-risk patients through intensified meta-
static surveillance, earlier intervention for metasta-
sis, and stratification for entry into clinical trials of
adjuvant therapy. Here, we migrate the expression
profile from a hybridization-based microarray plat-
form to a robust, clinically practical, PCR-based 15-
gene assay comprising 12 discriminating genes and
three endogenous control genes. We analyze the tech-
nical performance of the assay in a prospective study
of 609 tumor samples, including 421 samples sent
from distant locations. We show that the assay can be
performed accurately on fine needle aspirate biopsy
samples, even when the quantity of RNA is below
detectable limits. Preliminary outcome data from the
prospective study affirm the prognostic accuracy of
the assay. This prognostic assay provides an impor-
tant addition to the armamentarium for managing
patients with uveal melanoma, and it provides a
proof of principle for the development of similar
assays for other cancers. (J Mol Diagn 2010, 12:461–468;
DOI: 10.2353/jmoldx.2010.090220)

Most cancer deaths are the result of metastatic spread
from the primary tumor to distant organs. Once meta-
static disease has advanced to the point that it can be
identified by clinical imaging techniques, the tumor bur-
den is so great, and the cancer cells so genetically
deranged, that therapy is often ineffective. Uveal (ocular)
melanoma is an aggressive cancer that epitomizes this
problem. Uveal melanoma spreads preferentially to the

liver in up to half of patients, and the metastatic disease
is almost always fatal.1 Improvements in survival are un-
likely to arise from new therapies for advanced metastatic
disease but, rather, from early detection of metastatic
disease at a less advanced stage that is more amenable
to therapy or from adjuvant therapy before detection of
metastatic disease. An accurate test for identifying high-
risk patients would allow for such personalized manage-
ment, as well as for stratification of high-risk patients into
clinical trials for adjuvant therapy. Further, most patients
desire to have accurate prognostic information to allow
them to make personal decisions regarding their future.2

We previously identified a gene expression profile de-
rived from primary uveal melanomas that distinguished
between low metastatic risk (class 1 signature) and high
metastatic risk (class 2 signature).3 Further, we showed
that this gene expression profile could be performed
using a small number of discriminating genes on archival
specimens and fine needle biopsy samples, and that it was
more accurate than the clinical, pathological, and chromo-
somal prognostic factors that we evaluated.3–6 Two inde-
pendent groups have confirmed the superior prognostic
accuracy of gene expression profiling compared with the
other prognostic biomarkers currently available.7,8

Here, we migrated the gene expression profile from a
high-density hybridization-based microarray platform to a
15-gene PCR-based assay that can be used on a routine
clinical basis on very small samples obtained by fine
needle aspiration and archival formalin fixed specimens.
We provide results from a multicenter prospective study
showing that the assay can be performed on samples
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sent from distant locations with a very low failure rate, and
we show preliminary outcome data affirming the prognos-
tic accuracy of the 15-gene assay.

Materials and Methods

Microarray-Based Gene Expression Profiling

Gene expression profile data generated from high-den-
sity commercial microarray platforms were published and
described elsewhere.3,5,6,9 The data were collected on
one or more of the following platforms: Affymetrix U133A
GeneChip (28 cases), U133Av2 GeneChip (11 cases),
and Illumina Ref8 Beadchip array (26 cases).

Preparation of RNA Samples

Tumor RNA samples were obtained by fine needle aspi-
rate biopsy (FNAB; 553 samples) or immediately after
enucleation (56 samples). Samples were obtained from
Washington University (188 samples) and from 11 collab-
orating sites (421 samples). For all patient samples col-
lected at Washington University and the other sites, In-
stitutional Review Board approval and patient informed
consent were obtained. Fine needle biopsies were per-
formed using a 25-gauge needle on untreated uveal mel-
anomas, as previously described.5,10 For each FNAB, the
first sample was used for cytologic examination and the
second for RNA analysis. Each needle pass was directed
into the same location, toward the center of the tumor.
Cytology reports and patient outcomes were available
only on samples collected at Washington University.

FNAB samples for RNA analysis were expelled into an
empty RNase-free tube in the operating room. The empty
syringe was filled with 200 �l of extraction buffer (XB)
from the PicoPure RNA isolation kit (Molecular Devices,
Sunnyvale, CA), which was flushed through the syringe to
collect any additional tumor cells lodged in the needle
hub. The tube was then snap-frozen in liquid nitrogen in
the operating room before transportation. On arrival in the
laboratory, the samples were logged and stored in a
freezer at �80°C until they could be processed. RNA was
isolated using the PicoPure kit (including the optional
DNase step), which yielded about 100 ng to 1.5 �g total
RNA per aspirate using the NanoDrop 1000 system
(NanoDrop Products, Wilmington, DE). For samples ob-
tained at enucleation, the eye was taken away from the
operative field and sectioned along the pupil-optic nerve
axis using a razor blade. A thin section of tumor was then
sliced off and placed on Whatman paper, on which the
tumor orientation was marked (A, apex; B, base; C and D,
the anterior and posterior edges, respectively). The tumor
was then scored using the razor blade to facilitate later
removal of small fragments from different parts of the
tumor to assess for tumor heterogeneity without having to
thaw the entire tumor specimen. The specimen was then
wrapped in foil and immediately snap-frozen in liquid
nitrogen in the operating room. Total RNA was obtained
using TRIzol (Invitrogen, Carlsbad, CA), including the
optional isolation step, which is performed to rid the

sample of any insoluble material and purified using
RNeasy kits (QIAGEN, Valencia, CA) according to man-
ufacturers’ instructions. RNA quality was assessed on the
NanoDrop 1000 system. For formalin-fixed paraffin-em-
bedded (FFPE) samples, five 10-�m sections were ob-
tained from tissue blocks, and tumor tissue was dis-
sected away from surrounding normal material. Total
RNA was isolated using the RecoverAll Total Nucleic
Acid Isolation kit (Ambion, Austin, TX) following the man-
ufacturer’s protocol. RNA samples were stored at �80°C.
For specimens sent to St. Louis from other centers, tubes
were placed on dry ice, mailed by overnight courier, and
handled as described above. No RNA degradation was
observed for samples handled according to protocol.

Real-Time PCR Analysis

All RNA samples were converted to cDNA using the High
Capacity cDNA Reverse Transcription kit from Applied
Biosystems (Applied Biosystems Inc., Foster City, CA)
and following the manufacturer’s protocol. For samples
of sufficient quantity, 1.0 �g of RNA was converted to
cDNA. For less concentrated samples, for instance RNA
collected from FNAB or FFPE samples, the entire 10 �l of
RNA was used. Complete conversion of RNA to cDNA
was assumed. For samples of low RNA quantity (FNAB)
or quality (FFPE), cDNA was amplified for 14 cycles with
pooled TaqMan Gene Expression Assays and TaqMan
Pre-Amp Master Mix following manufacturer’s protocol.
Preamplified samples were diluted 20-fold into sterile TE
buffer and stored at �20°C until needed. Expression of
mRNA for individual genes was quantified using the
7900HT Real-Time PCR System with Applied Biosystems
TaqMan Gene Expression Assays and Gene Expression
Master Mix following manufacturer’s protocol. TaqMan
Microfluidics Expression Arrays were custom ordered to
include our 12 class discriminating genes, three endog-
enous control genes, and 18S rRNA as a manufacturer’s
control, so that each assay would be run in triplicate for
each sample loaded. Ct values were calculated using the
manufacturer’s software, and mean Ct values were cal-
culated for all triplicate sets. �Ct values were calculated
by subtracting the mean Ct of each discriminating gene
from the geometric mean of the mean Ct values of the
three endogenous control genes.11

Biostatistical Analyses

Selection of endogenous control genes was performed
using geNorm software (http://medgen.ugent.be/genorm),
which identifies stable combinations of genes from a pool
of potential controls. Rank order of discriminating probe-
sets to be entered stepwise into the predictive test for
cross validation were determined with minimum redun-
dancy/maximum relevance (mRMR) software, using mu-
tual information difference as the feature selection
scheme and � 0.5 standard deviations as a threshold for
discretizing expression values. Significance of discrimi-
nating probeset overlap was determined using hyper-
geometric probability using the PROBHYBR function of
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SAS 9.0 statistical software as previously described.12

Molecular class assignments were made by entering the
12 �Ct values of each sample into the machine learning
algorithm GIST 2.3 Support Vector Machine (SVM) (http://
bioinformatics.ubc.ca/svm). SVM was trained using a set
of 28 well-characterized uveal melanomas of known mo-
lecular class and clinical outcome. SVM creates a hyper-
plane between the training sample groups (here, class 1
and class 2), then places unknown samples on one or the
other side of the hyperplane based on their gene expres-
sion profiles. Confidence is measured by discriminant
score, which is inversely proportional to the proximity of
the sample to the hyperplane. Kaplan–Meier analysis was
used to assess metastasis-free survival. Statistical anal-
yses were performed using Partek Genomics Suite soft-
ware, version 6.4 and MedCalc software, version 9.3.6.0.

Results

Identification of Candidate Discriminating and
Control Genes

In the current study, we sought to identify a small number
of the most highly discriminating genes and invariant
control genes to migrate to a PCR-based clinically prac-
tical platform. The flow chart describing this process is
summarized in Figure 1. First, we identified a set of genes
that were highly robust discriminators between class 1
and class 2 across multiple microarray platforms. For this
analysis, we used our previously published datasets ob-
tained from the Affymetrix U133A and U133Av2 Gene-

Chips and the Illumina Ref8 Beadchip.3,5,9 Genes were
filtered according to signal-to-noise (S2N) ratio and then
by fold change. We chose the top 38 genes, including 23
genes that were up-regulated in Class 1 and 15 genes
that were up-regulated in Class 2. Based on our earlier
estimates that a small number of discriminating genes
would be sufficient to maintain full prognostic accuracy,5

we expected that these 38 candidate genes would be an
ample pool of candidates from which to select the final
set of genes based on their qPCR performance.

In parallel, we used geNorm software to analyze the
microarray expression data to identify genes to be used
as controls whose expression varied minimally across all
of the class 1 and class 2 tumor samples. This analysis
ranked the top candidate genes and estimated that three
control genes would be optimal for the internal structure
of the dataset. We selected the seven top candidate
genes to validate by qPCR, with the ultimate goal of
identifying the three best control genes.

All candidate genes were evaluated further by qPCR
using predesigned TaqMan Gene Expression Assays
that were run in triplicate. The genes were tested on our
well-characterized training set of 28 uveal melanomas
(15 class 1 and 13 class 2) with long clinical follow-up of
at least five years. Snap-frozen tissue was available on all
samples, and FFPE tissue was available on 19 of these
specimens (10 class 1 and nine class 2).

Selection of Control Genes

The candidate control genes were initially analyzed on
unfixed, snap-frozen samples. Among the candidate
control genes, MRPS21, RBM23, and SAP130 exhibited
the least variable expression by geNorm analysis. These
three genes were thus selected as the control genes. The
geometric mean of the average Ct values of these genes
was calculated for each sample, and this value was used
as an internal control to normalize the �Ct values ob-
tained for the 38 candidate discriminating genes.11

Selection of Discriminating Genes

The candidate discriminating genes were initially ana-
lyzed on unfixed snap-frozen samples from the training
set. Sixteen genes were eliminated because they were
not validated by qPCR-based expression, which did not
correlate with their microarray-based expression or with
tumor class assignments. The remaining 22 genes were
evaluated further to identify an optimum set of genes that
would yield accurate class assignments in FNAB and
FFPE samples.

To approximate the amount of cDNA obtained from
FNAB specimens, cDNA from the snap-frozen training
samples were diluted to �100 ng per sample, pre-ampli-
fied for 14 cycles using a pool of all 22 candidate dis-
criminating genes and the three control genes, then an-
alyzed by qPCR, using the geometric mean of the three
control genes for normalization.

To test the candidate genes on archival tissue, FFPE
tissue samples from the training set tumors were depar-

Figure 1. Flow diagram summarizing the process for migrating the gene
expression profile from a hybridization-based microarray platform to a 15-
gene qPCR-based assay performed on a microfluidics card.
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affinized, and RNA was extracted. The RNA samples
were converted to cDNA and then preamplified and an-
alyzed as described above. In two of the 19 FFPE cDNA
samples, multiple genes were undetectable by qPCR,
and these samples were not used for subsequent
studies.

Using the expression data from the three sample train-
ing sets, the 22 candidate discriminating genes were
ranked by mRMR based on their weighted contribution,
or relevance, to the overall gene expression signature
and their lack of redundancy with other discriminating
genes. The rank lists for each of the three training sets
(snap-frozen, FNAB, and FFPE) were merged to generate
a final list of 12 discriminating genes.

Development of the 15-Gene Assay

Using SVM as the machine learning algorithm, we ana-
lyzed 609 samples with the 15-gene assay. Preliminary
outcome data were available on FNAB samples collected
from 172 patients from the Washington University center.
In this group of patients with a median follow up of 16
months, the 15-gene assay accurately identified which
patients would develop metastatic disease (log rank test,
P value � 1.9 � 10�6; Figure 2). We compared SVM to
the Weighted Voting, Regularized Discriminant Analysis
and the Predictive Analysis of Microarrays machine learn-

ing algorithms and none performed better than SVM in
survival analyses (data not shown).

Performance of Smaller Gene Sets

We next wished to determine the smallest number of
genes necessary to maintain the accuracy of the assay.
First, we used mRMR to rank the 12 discriminating genes
in order of greatest contribution to the SVM classification
with the least redundancy (Figure 3A). Next, we reclas-
sified the samples using only the top 11 genes, the top 10
genes, etc. (Figure 3B). Compared with the class assign-
ments using all 12 genes, the 11-gene set made no
errors, the 10-gene set made one error (0.3%), and fur-
ther reductions in the number of genes led to a sharp rise
in the number of errors. When only the top gene (HTR2B)
was used, 45 errors (13%) were made. As a result of
these findings, coupled with the fact that there was no
logistical advantage in reducing the number of genes
below the 12 discriminating genes and three control
genes because of the design of the TaqMan® microflu-
idics card, we retained all 12 discriminating genes in the
final prognostic assay.

Effect of RNA Quality and Quantity on Assay
Performance

To evaluate the technical performance of the 15-gene
assay in FNAB and fresh frozen samples, we analyzed
609 prospectively collected samples by FNAB (553 sam-
ples) or immediately after enucleation (56 samples) as
part of a multicenter prospective study. Because the
multicenter study focused on FNAB and fresh frozen
samples, the technical performance for FFPE samples
will be reported in a separate article.

For this analysis, a gene was said to be undetectable
if its transcript was undetectable (i.e., no Ct value) after
40 qPCR cycles. A sample was said to have failed if one
or more endogenous controls was undetectable. By this
definition, sample failure occurred in 32 samples (5.2%).
To determine the cause of these failures, we analyzed
RNA quantity and quality. With regard to quantity, there
was no relationship between sample failure and the con-
centration of RNA in the original sample as measured by
NanoDrop (data not shown), indicating that the assay

Figure 2. Kaplan-Meier analysis showing metastasis-free survival as a func-
tion of molecular class in 172 uveal melanoma patients. Statistical signifi-
cance determined by the log rank test is shown.

Figure 3. Analysis of top genes. A: Heatmap
showing normalized expression of the 12 dis-
criminating genes compared with SVM discrimi-
nant score in a set of prospectively collected
samples (blue � low relative expression, red �
high relative expression, gray � intermediate
expression). B: Classification errors as a function
of the number of discriminating genes in the
assay. Genes were removed stepwise according
to mRMR rank. See text for details.

464 Onken et al
JMD July 2010, Vol. 12, No. 4



could detect RNA transcripts below the limits of the
NanoDrop instrument.

Because the amount of RNA in these samples was too
low to measure RNA quality using conventional electro-
phoretic methods, we used the geometric mean of the Ct

values of the three endogenous controls as a measure of
intact RNA template available for amplification in each
sample. This was based on: (1) the Ct values were in-
versely proportional to the log of the number of available
RNA templates in the sample (i.e., the more intact RNA
present, the lower the Ct value), and (2) the endogenous
controls should be expressed at constant levels across
all uveal melanomas, a high Ct value should be a tech-
nical rather than biological aberration.

Most samples exhibited the expected linear relation-
ship between RNA concentration and the geometric
mean of the control Ct values (Figure 4A). Samples that
were shifted below this expected linear range contained
very low RNA concentrations, whereas those shifted to
the right of the linear range were interpreted to contain
poor quality RNA (i.e., detectable RNA concentration but
diminished intact transcript available for amplification).
This accounted for 29 (91%) of the 32 failures (Figure 4B).
The only factor that we identified that was statistically
associated with sample failure was incorrect shipping
and/or handling of the sample in a manner that deviated
from our study protocol (Figure 4B). Sample failure oc-
curred in nine (36%) of the 25 samples that were handled
incorrectly, compared with 25 (4.4%) of samples that
were handled correctly, and this was statistically signifi-
cant (Fisher exact test, P � 0.0001). There was no cor-
relation between sample failure and molecular class as-
signment or cytologic diagnosis (Figure 4, C and D).
Remarkably, the 15-gene assay failed on only one (2.0%)

of 51 samples with a cytologic diagnosis of QNS (“quan-
tity not sufficient,” indicating that there were too few cells
on the cytology specimen for diagnosis), demonstrating
that the assay is sufficiently sensitive to generate a class
assignment in the vast majority of cases that are handled
properly, even when few cells are seen on the cytology
specimen.

Effect of Tumor Heterogeneity on Gene
Expression Profile

Intratumoral heterogeneity for monosomy 3 has been
estimated to occur in at least 14 to 18% of uveal mela-
nomas,13–15 and this heterogeneity may be an important
cause of reduced prognostic accuracy for chromosomal
analysis. Indeed, it has been postulated that monosomy 3
tumor cells in heterogeneous tumors can be masked from
detection by the more numerous disomy 3 cells.16 We
investigated the effect intratumoral genetic heterogeneity
on the 15-gene assay in two ways. First, we compared
the expression profile of the 12 discriminating genes in
eight fresh frozen tumor samples and matched post-
enucleation FNAB samples from the same tumor. The
former were cross-sectional slices encompassing the
base, center, apex, and edges of the tumor. The FNAB
samples were obtained according to the FNAB protocol
described in the Materials and Methods, with the needle
directed toward the center of the tumor. The SVM class
assignment was the same for all of the matched samples
(Table 1). To investigate further the issue of heterogene-
ity, we analyzed the gene expression profile from 33
sections of seven different tumors obtained from enucle-
ated eyes (Table 2). For all of these tumors, we obtained

Figure 4. Relationship between RNA concentra-
tion and RNA quality. A: Scatter plot of RNA
concentration versus the geometric mean of the
Ct values for the three endogenous control
genes. Black line indicates linear regression of
values within the expected range; dashed lines
indicate 90% prediction interval for regression.
B: The same plot as in A, showing samples that
were handled/shipped incorrectly and samples
that failed the assay (defined as one or more
endogenous controls undetectable after 40 qPCR
cycles). C: The same plot as in A, showing sam-
ples according to their molecular class assign-
ment. D: A subset of 148 cases from the Wash-
ington University center in which cytologic
diagnosis was available. QNS indicates quantity
not sufficient (too few cells to make a diagnosis).
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samples from the apex, base, and both tumor edges of
cross-sectional tumor slices, as described in the Materi-
als and Methods. For one of these tumors (MM110) we
analyzed an additional four sections through different

regions of the center of the tumor. Only one of the 33
regions that we analyzed showed discordance with the
other regions within the same tumor. In MM116, all sam-
ples exhibited the class 2 signature except the posterior
edge sample, which exhibited the class 1 signature. Im-
portantly, however, this one discordant sample had a low
discriminant score, which reduced the confidence in this
result. We concluded from these experiments that intra-
tumoral heterogeneity for the gene expression profile is
uncommon.

Because the work from our lab and others has shown
that gene expression profiling appears to be a more
accurate prognostic marker than chromosomal analy-
sis6–8 and because the gene expression profile showed
less intratumoral heterogeneity than monosomy 3, we
speculated that the 15-gene assay may be more sensi-
tive at detecting class 2 tumor cells in heterogeneous
tumors where the majority of cells are class 1. To test this
hypothesis, we mixed various ratios of RNA from three
pairs of class 1 and class 2 tumors and analyzed the
mixtures with the 15-gene assay (Figure 5). The assay
correctly classified all pure class 1 and class 2 samples.
Interestingly, samples containing as little as 25% contri-
bution from class 2 tumor cells were identified as class 2
by the assay, indicating that the assay is very sensitive for
detecting the class 2 signature in heterogeneous tumors.

Discussion

In this study, we migrated our gene expression profile for
predicting metastasis in uveal melanoma from a high-
density hybridization-based microarray platform to a
PCR-based platform TaqMan microfluidics card, which
was chosen because of its acceptance as a clinical
testing standard around the world. The assay was opti-
mized for use as a routine clinical assay on FNAB and
FFPE samples. In this report, we focused on the results
using the assay to analyze FNAB samples. Preliminary
results of a prospective multicenter study of FNAB sam-
ples showed that samples shipped from long distances
can easily be analyzed without loss of accuracy, and that

Table 1. Analysis of Heterogeneity of Gene Expression
Signature in Fresh Frozen Tumors and Matching
FNAB Samples

Tumor number SVM class
Discriminant

score

78_MB Class 1 �0.032
78_MM Class 1 �0.054
80_MB Class 2 0.238
80_MM Class 2 0.296
82_MB Class 1 �0.109
82_MM Class 1 �0.164
85_MB_Center Class 1 �0.069
85_MB_Edge Class 1 �0.041
85_MM Class 1 �0.086
86_MB Class 1 �0.193
86_MM Class 1 �0.195
87_MB Class 2 0.290
87_MM Class 2 0.294
89_MB Class 1 �0.137
89_MM Class 1 �0.153
91_MB Class 2 0.284
91_MM Class 2 0.271

MB indicates postenucleation fine needle biopsy; MM, cross-
sectional tumor slice. See text for explanation of SVM class and
discriminant score.

Table 2. Analysis of Regional Heterogeneity for Gene
Expression Signature

Tumor
number Location

SVM
class

Discriminant
score

MM 109 Apex Class 1 �0.507
MM 109 Base Class 1 �0.770
MM 109 Anterior Class 1 �0.521
MM 109 Posterior Class 1 �0.674
MM 110 Edge/apex Class 2 1.812
MM 110 Edge/base Class 2 1.799
MM 110 Edge/anterior Class 2 1.728
MM 110 Edge/posterior Class 2 1.738
MM 110 Center/apex Class 2 1.818
MM 110 Center/base Class 2 1.717
MM 110 Center/anterior Class 2 1.723
MM 110 Center/posterior Class 2 1.824
MM 112 Apex Class 2 0.257
MM 112 Base Class 2 0.018
MM 112 Anterior Class 2 0.172
MM 112 Posterior Class 2 0.694
MM 116 Apex Class 2 0.991
MM 116 Base Class 2 0.665
MM 116 Anterior Class 2 1.084
MM 116 Posterior Class 1 �0.102
MM 120 Apex Class 2 0.899
MM 120 Base Class 2 1.134
MM 120 Anterior Class 2 0.961
MM 120 Posterior Class 2 1.054
MM 121 Apex Class 2 0.687
MM 121 Base Class 2 0.765
MM 121 Anterior Class 2 0.407
MM 121 Posterior Class 2 0.454
MM 122 Apex Class 1 �0.639
MM 122 Base Class 1 �0.194
MM 122 Anterior Class 1 �0.567
MM 122 Posterior Class 1 �0.606

Figure 5. Dilution series of RNA from class 1 and class 2 tumors analyzed by
the 15-gene assay. Discriminant scores for SVM (y axis) are plotted against
contribution of class 1 RNA (x axis). The 15-gene assay classified mixtures as
class 2 even when class 2 RNA was in the minority. Negative scores indicate
class 1; positives scores, class 2. Closest fit trendline included for clarity.
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following proper protocol is important for minimizing sam-
ple failures. In a subset of patients enrolled from our
center, the 15-gene assay exhibited excellent prognostic
accuracy. It will be important to reassess the prognostic
accuracy from all collaborating centers after longer fol-
low-up has been obtained.

We selected SVM as the machine learning algorithm
for this assay based on our previous favorable experi-
ence with the algorithm,17 because it is widely accepted
as among the most highly robust machine learning algo-
rithms, and because it outperformed other similar algo-
rithms in our dataset. SVM requires a training set of
samples with known molecular class. We have generated
such a training set of samples from patients with very
long follow-up. SVM inputs the gene expression data of
the training set as two sets of vectors (class 1 and class
2) in n-dimensional space, then constructs a separating
hyperplane in that space to maximize the margin be-
tween the two data sets.18 SVM then classifies test sam-
ples by placing them on one or the other side of this
hyperplane. The proximity of the sample to the hyper-
plane is inversely proportional to the discriminant score, a
measure of confidence. To date, we have not identified a
discriminant score below which the predictive accuracy
decreases (data not shown), but future studies will be
performed to address this question as greater numbers
of patients and longer follow-up are obtained.

Although the biological functions of the discriminating
genes are not important to their value as biomarkers, it is
interesting that many of these genes have been shown
previously to be involved in cancer. HTR2B is a serotonin
receptor that signals through the heterotrimeric small
GTPase, GNAQ,19 which is mutated in half of uveal mel-
anomas.20 The bHLH inhibitor ID2 functions as a tumor
suppressor in uveal melanoma and some other can-
cers.9,21,22 MTUS1 is a tumor suppressor protein.23

ECM1 is an extracellular matrix protein that plays an
important role in angiogenesis and is overexpressed in
some tumors.24 ROBO1 is an axonal guidance cue re-
ceptor that has been implicated in angiogenesis, as well
as migration of neural crest and tumor cells.25,26 SATB1
regulates higher order chromatin organization, and its
disruption could lead to broad epigenetic changes.27

LTA4H is involved in leukotriene synthesis, which influ-
ences immune modulation and leukocytic tumor infiltra-
tion.28,29 EIF1B is a translation initiation factor that is
involved in protein synthesis and is down-regulated in
some cancers such as hepatocellular carcinomas.30

RAB31 is a member of the RAS family of small GTPases
and is thought to play a role in mitogenic signaling
through the vesicular transport machinery.31 FXR1 is a
nucleolar targeting factor that has been linked to fragile-X
mental retardation and has been identified as a possible
tumor suppressor in colon carcinoma.32 LMCD1 is a
GATA transcription factor inhibitor that regulates migra-
tion and differentiation of mesenchymal cells.33 Various
individual biomarkers have been suggested for prognos-
tication in uveal melanoma, including nibrin,17 auto-
taxin,34 osteopontin,35 and TIMP3.36 However, our find-
ings here indicate that the simultaneous measurement of
expression of several highly discriminating genes pro-

vides superior prognostic accuracy compared with indi-
vidual biomarkers.

Our findings suggest that intratumoral heterogeneity
for gene expression profile is uncommon and may ex-
plain why the prognostic accuracy of gene expression
profiling appears to be superior to chromosomal analysis.
The 15-gene assay identifies the class 2 signature even
when class 2 tumor cells represent a minority of the
specimen, implying that only a small proportion of class 2
cells need to be present in the tumor to convey a high risk
for metastasis. This finding could have far-reaching im-
plications for understanding the biology of metastasis in
uveal melanoma. However, a relatively small number of
tumors were analyzed for heterogeneity, and a much
larger study is underway to provide a better understand-
ing of heterogeneity and its impact on clinical testing.
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