The current 23- and 35-gene expression profile (GEP) ancillary diagnostic testing workflow for difficult-to-diagnose melanocytic lesions increases the rate of actionable results to 99%

Matthew S Goldberg, MD^{1,2}, Jennifer J Siegel, PhD¹, Brooke H Russell, PhD¹, Jason H Rogers, MSc¹, Kyle R Covington, PhD¹, Kristen M Oelschlager, RN¹, Trisha M Poteet¹, Jeffrey K Wilkinson, PhD¹, Michael D Berg, PhD¹, Katherine Falkowski, PhD¹, and Sarah J Kurley, PhD¹ ¹Castle Biosciences, Inc., Friendswood, TX ²Icahn School of Medicine at Mount Sinai, New York, NY

Background

- Diagnostic discordance in suspicious cutaneous melanocytic lesions is well documented and particularly prevalent among difficult-to-diagnose cases, for which histopathology may be insufficient for a definitive diagnosis.¹⁻⁴
- The **23-gene expression profile** (GEP) and **35-GEP** tests are clinically available objective ancillary tools that facilitate diagnosis of melanocytic lesions with ambiguous histopathology. The tests use proprietary algorithms to produce results of: **suggestive of benign neoplasm**; intermediate (cannot rule out malignancy); or suggestive of malignant neoplasm.⁵⁻⁷
- > The 23-GEP has shown accuracy metrics of over 90% sensitivity in multiple clinical studies that included patient outcomes.⁸⁻¹⁰ The 23-GEP historically has resulted in ~23% of cases receiving a technical failure or an intermediate result, which can be perceived as **nonactionable**.^{6,11-13}
- > The 35-GEP test addresses this shortcoming, showing both an increased sensitivity⁷ and a decreased nonactionable rate of 8.5% in clinical orders.
- Clinical utility has been demonstrated with benign and malignant GEP test results;^{11,14} therefore, those test results are defined as **actionable**.

Objective

- Today, both the 23- and 35-GEP are offered from a single laboratory. Under the current laboratory workflow, unless preferred otherwise by the ordering clinician, clinical samples are processed first through the 23-GEP test, and if a technical failure or intermediate result is received, processed through the 35-GEP (Figure 1). However, both are run independently of one another and can be ordered as stand-alone tests.
- > Here, we report accuracy metrics from a Performance Cohort and actionable results from clinically submitted samples.

Methods

results from the 23-GEP undergo testing with the 35-GEP. **GEP**, gene expression profile.

- Melanocytic lesions and associated de-identified clinical data from patients ≥18 years of age were included in this study. Samples were acquired under an IRB-approved protocol, including those previously submitted for clinical testing for the 31-GEP. Performance Cohort samples were independently reviewed (blinded to the original diagnosis) by at least 3 total dermatopathologists for adjudication and included if they received at least 2 out of 3 diagnostic concordance (Table 1). The study also included clinical cases submitted for GEP testing with results reported since implementation of the described workflow from 3 June – 3 December 2021 (Table 2).
- All cases not receiving a benign or malignant result from the 23-GEP were run on the 35-GEP, except for pediatric cases (<18 years), which were only run on the 23-GEP and excluded from analysis. Technical failure included samples with insufficient quantity of RNA and/or control or discriminant gene amplification failure based on the requirements for each test.

Presented at the Society of Dermatology Physician Assistants (SDPA) Annual Summer Conference; June 16-19, 2022, Austin, TX.

Results

> The Performance Cohort was comprised of 350 FFPE archival biopsy samples from adults \geq 18 years of age with a cutaneous melanocytic lesion with a consensus diagnosis. All samples were run on the 23-GEP, and any intermediate or technical fail samples were subsequently run on the 35-GEP per the current clinical protocol (Figure 1). Accuracy metrics demonstrated high performance of the GEP workflow (Table 1).

Table 1. Performance Cohort accuracy metrics from the current GEP workflow

Performance Cohort, n=350			
	GEP	95% CI	
Sensitivity	96.0%	92.0% - 99.0%	
Specificity	87.8%	80.8% - 93.8%	
PPV	89.0%	83.8% - 94.1%	
NPV	95.6%	91.1% - 98.9%	
Intermediate	1.5%		

CI, confidence interval; GEP, gene expression profile; NPV, negative predictive value; PPV, positive predictive value.

- Clinical test results were analyzed over a 6-month period. The 23-GEP test gave an actionable result of benign or malignant in 77.1% of cases (Table 2), which is comparable to past reporting in ambiguous cases for this test.^{6,11}
- Nonactionable classifications of the 23-GEP test were 22.9% (13.3% intermediate and 9.6% technical failure). These cases then underwent testing with the 35-GEP, and an additional 22.2% of originally submitted cases received an actionable result. Only 0.6% of cases received a final intermediate result (i.e., from both tests); the technical failure rate was 0.1% (Table 2).
- > This GEP workflow increased the rate of an actionable report from 77.1% to 99.3% when compared with 23-GEP testing alone (Table 2). The GEP test results overall were 60.2% benign, 39.1% malignant, 0.6% intermediate, and 0.1% technical failure.
- > The median turnaround time for sample processing was 4 business days, (Table 2) and was only increased by 1 day when both GEP tests were run.

Table 2. Clinically actionable GEP test results

	Actionable*	Nonactionable [‡]	
23-GEP only	77.1%	22.9%	
Subsequent 35-GEP	22.2%	0.7%	
Overall Results	99.3%	0.7%	
	Turnaround Time#		
Median	4 days		
≤ 3 days	27.6%		
≤ 5 days	90.9%		

*Actionable: sum of benign and malignant test results; ‡Nonactionable: sum of intermediate and technical failure test results #From the date of receipt of tissue by the lab. **GEP**, gene expression profile

Though either GEP test can be run individually, the current GEP workflow collectively leverages the strengths of both independent GEP assays The GEP workflow demonstrated a high rate of accuracy in the Performance Cohort cases, with 96.0% sensitivity and 87.8% specificity

The current GEP workflow for ambiguous melanocytic lesions has substantially improved reporting of clinically actionable **results** from a historic rate of ~77% for the 23-GEP alone to over 99%

References

- Shoo, B. A. et al. J Am Acad Dermatol 2010. 62 (5) 751-756.
- 2. Gerami, P. et al. Am J Surg Pathol 2010. 34 (6) 816-821.
- Haws, B. et al. J Cutan Pathol 2012. 39 (9) 844-849.
- Elmore, J. G. *et al. BMJ* 2017. 357 (1) j2813.
- 6. Clarke, L. E. *et al. Cancer* 2017. 123 (4) 617-628.
- 7. Estrada, S. et al. SKIN 2020. 4 (6) 506-522.
- 9. Ko, J. S. et al. Human Pathology 2019. 86 213-221.

Acknowledgments & Disclosures

- > This study was sponsored by Castle Biosciences, Inc.

Conclusions

Clarke, L. E. et al. J Cutan Pathol 2015. 42 (4) 244-252. 8. Ko, J. S. et al. Cancer Epidem Biomar Prev 2017. 26 (7) 1107–1113. 10. Clarke, L. E. et al. Personalized Medicine 2020. 17 (5) 361-371. 11. Cockerell, C. J. et al. Medicine 2016. 95 (40) e4887. 12. Minca, E. C. et al. Mod Pathol 2016. 29 (8) 832-843. 13. Castillo, S. A. et al. Am J Dermatopathol 2020. 42 (12) 939-947. 14. Farberg, A. *et al. SKIN* 2020. 4 (6) 523–533.

> All authors are employees and shareholders of Castle Biosciences, Inc.