Clinical Utility and a Guide for Using Gene Expression Profile Ancillary Diagnostic Testing for Cutaneous Melanocytic Neoplasms

Joanna Ludzik, MD, PhD\(^1\), Alexander Witkowski, MD, PhD\(^1\), Brooke H Russell, PhD\(^2\), Jason H Rogers, MSc\(^2\), Matthew S Goldberg, MD\(^{2,4}\), Abel D Jarell, MD\(^5\), and Aaron S Farberg, MD\(^5\)

\(^1\)Department of Dermatology, Oregon Health & Science University, Portland, OR \(^2\)Castle Biosciences, Inc., Friendswood, TX \(^3\)Cahn School of Medicine at Mount Sinai, New York, NY
\(^4\)Granite State Dermatology, PC, Portsmouth, NH \(^5\)Baylor Scott & White Health System, Dallas, TX

Background

- Diagnostic discordance in suspicious cutaneous melanocytic lesions is well documented and particularly prevalent among difficult-to-diagnose cases, for which histopathology may be insufficient for a definitive diagnosis.\(^6\)

- The 23-gene expression profile (GEP) and 35-GEP tests are clinically available objective ancillary diagnostic tools (collectively, dGEP) that facilitate diagnosis of melanocytic lesions with ambiguous histopathology. The tests use proprietary algorithms to produce results of: suggestive of benign neoplasm, intermediate (cannot rule out malignancy), or suggestive of malignant neoplasm.\(^7\)

- The dGEP tests have demonstrated accuracy metrics of 90.4% - 94.9% sensitivity and 92.5% - 96.2% specificity for 23-GEP and 94.7% - 99.1% sensitivity and 89.5% - 94.3% specificity for 35-GEP\(^8\).

- Clinical utility has been demonstrated with benign and malignant dGEP test results. For lesions that receive a benign dGEP test result, decreases in treatment intensity have been observed. Specifically, a reduction in the number of excisions performed was noted in two studies (76.7% - 80.5%). A malignant dGEP result prompted 95.2% of dermatologists to increase office visit frequency and a 75% increase in recommendations to excise.\(^9\)

Objective

- Provide a framework for use of dGEP testing in clinical practice
- Demonstrate how GEP results can alter patient management plans

References

Acknowledgments & Disclosures

- AHL has served as a Consultant and investigator for studies supported by Castle Biosciences, Inc. BHR, JHE, and MGS are employees and shareholders of Castle Biosciences, Inc. ASF has served as Consultant for Castle Biosciences, Inc.
- This study was supported by Castle Biosciences, Inc.

Conclusions

- GEP testing and results can be incorporated into diagnostic clinical use at various points during the patient journey.
- Optimal dGEP use takes place during the diagnostic process and involves the dermatopathologist to alleviate ambiguous diagnoses.
- Clinical concerns that raise uncertainty may necessitate utilization of dGEP to achieve clinicopathological correlation.
- Treatment decisions have been shown to be dGEP result-dependent and can alter patient management plans such as excision and office visit frequency.

Figure 1. A proposed post-biopsy clinical workflow for the use of dGEP for the treating dermatologist clinician and the diagnosing dermatopathologist. Including situations of diagnostic and clinical use to achieve personalized management and treatment plans.

Figure 2. Common provider-based scenarios to consider dGEP testing.

Figure 3. Overall Summary of dGEP Diagnostic and Treatment Utility.

dGEP

Diagnostic Utility

Is it melanoma or not?

- 43% reduction in indeterminate diagnoses\(^11\)
- 51% increase in diagnostic confidence\(^10\)
- High accuracy\(^3,8\)

Treatment Utility

Should an excision be performed?

- Benign dGEP Result
 - 76.7% - 80.5% reduction in excisions\(^9,10\)
 - 74.1% of dermatologists reduce office visits\(^9\)
 - Demonstrated safe to forego re-excision\(^12\)
- Malignant dGEP Result
 - 75% increase in excisions\(^9,10\)
 - 95.2% of dermatologists increase office visits\(^9\)