Subtype performance of the ancillary diagnostic 23- and 35-gene expression profiles (GEP) for difficult-to-diagnose melanocytic lesions

Jose A Plaza, MD¹, Sarah I Estrada, MD², Kelli L Ahmed, PhD³, Jennifer J Siegel, PhD³, Jason H Rogers, MSc³, Brooke H Russell, PhD³, Jeffrey K Wilkinson, PhD³, Sarah J Kurley, PhD³, Matthew S Goldberg, MD^{3,4}, and Kiran Motaparthi, MD⁵

¹ Depts of Dermatology & Pathology, The Ohio State Univ Wexner Medicine, Columbus, OH, USA ² Affiliated Dermatology, Scottsdale, AZ, USA ³ Castle Biosciences, Inc., Friendswood, TX, USA ⁴ Icahn School of Medicine at Mount Sinai, NY, USA ⁵ Dept of Dermatology, Univ of Florida College of Medicine, Gainesville, FL, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁸ Icahn School of Medicine at Mount Sinai, NY, USA ⁹ Icahn School of M

Scan for more info

Background

- Diagnostic discordance in cutaneous melanocytic lesions is well documented and particularly prevalent among difficult-to-diagnose cases, for which histopathology may be insufficient for a definitive diagnosis.¹⁻⁴
- The 23-gene expression profile (GEP) and 35-GEP tests are clinically available, objective ancillary tools that facilitate diagnosis of melanocytic lesions with ambiguous histopathology. The tests use proprietary algorithms to produce results of: suggestive of benign neoplasm; intermediate (cannot rule out malignancy); or suggestive of malignant neoplasm.⁵⁻⁷
- The GEP tests have demonstrated accuracy metrics of 90.4 94.9% sensitivity and 92.5 96.2% specificity for the 23-GEP, and 94.7 99.1% sensitivity and 89.5 94.3% specificity for the 35-GEP.⁵⁻⁷
- Proday, both the 23- and 35-GEP tests are offered from a single laboratory. Under the current laboratory workflow, unless preferred otherwise by the ordering clinician, clinical samples are processed first through the 23-GEP test, and if a technical failure or intermediate result is received, processed through the 35-GEP (**Figure 1**). However, both are run independently of one another and can be ordered as stand-alone tests.⁸

Here, the performance of the 23- and 35-GEP tests using the clinical workflow was tested on unequivocal cases from a variety of subtypes

Methods

Melanocytic lesions and associated de-identified clinical data from patients ≥18 years of age were included in this study. Samples were acquired under an IRB-approved protocol, including those previously submitted for clinical testing for the 31-GEP melanoma prognostic test. Samples were independently reviewed (blinded to the original diagnosis) by at least 3 total dermatopathologists for adjudication and included if they received at least 2 out of 3 diagnostic concordance with choices of benign, malignant, or uncertain malignant potential (UMP) (**Table 1**). Subtype in this analysis was determined by the submitting dermatopathologist. All cases not receiving a benign or malignant result from the 23-GEP were run on the 35-GEP.

Results

Table 1. GEP workflow overall performance accuracy metrics

Performance Cohort, n=350					
		95% Confidence interval			
Sensitivity	96.0%	92.0% - 99.0%			
Specificity	87.8%	80.8% - 93.8%			
Positive predictive value	89.0%	83.8% - 94.1%			
Negative predictive value	95.6%	91.1% - 98.9%			
Intermediate result	1.5%				

Table 2. GEP workflow test result by lesion subtype (as indicated by submitting dermatopathologist)

Subtype*	Final GEP workflow result			
	Benign, n	Intermediate, n	Malignant, n	
Melanomas (n=245)				
Acral lentiginous			15	
Common			15	
Desmoplastic			20	
Lentigo maligna	1		30	
Melanoma <i>in situ</i>			16	
Nodular	4		77	
Not specified	1		4	
Spitzoid	3		17	
Superficial spreading	1		41	
Benign nevi (n=100)				
Blue	28	1	1	
Compound	9		3	
Compound dysplastic	26 ^A	1	3 ^B	
Deep penetrating	1			
Intradermal	1		1	
Junctional dysplastic	13 ^C	1 ^D	4 ^E	
Spitz	7			

^{*5} samples did not have adequate subtype information. Dysplastic nevi had different degrees of atypia: A: 13 mild, 2 moderate; B: 2 mild, 1 moderate; C: 6 mild, 4 moderate; D: 1 moderate; E: 3 mild, 1 moderate.

Acknowledgments & Disclosures

› JAP has served as a consultant for Castle Biosciences, Inc. SIE is a consultant and shareholder of Castle Biosciences, Inc. KLA, JJS, BHR, JHR, JKW, SJK, and MSG are employees and shareholders of Castle Biosciences, Inc. KM has served as a consultant and investigator for studies supported by Castle Biosciences, Inc. This study was supported by Castle Biosciences, Inc.

Results

Table 3. GEP workflow performance accuracy metrics by lesion subtype

n	Sensitivity	Specificity
15	100%	
15	100%	
20	100%	
31	96.8%	
16	100%	
81	95.1%	
20	85%	
42	97.6%	
30		93.3%
30		86.7%
18		72.2%
	15 15 20 31 16 81 20 42	15 100% 15 100% 20 100% 31 96.8% 16 100% 81 95.1% 20 85% 42 97.6%

^{*}Only subtypes with $n \ge 15$ are shown.

Conclusions

The 23- and 35-GEP test workflow results in high accuracy across a large spectrum of subtypes of melanocytic neoplasms.

References

1. Shoo, B. A. *et al. J Am Acad Dermatol* 2010. 62 (5) 751-756. **2.** Gerami, P. *et al. Am J Surg Pathol* 2010. 34 (6) 816-821. **3.** Haws, B. *et al. J Cutan Pathol* 2012. 39 (9) 844-849. **4.** Elmore, J. G. *et al. BMJ* 2017. 357 (1) j2813. **5.** Clarke, L. E. *et al. J Cutan Pathol* 2015. 42 (4) 244-252. **6.** Clarke, L. E. *et al. Cancer* 2017. 123 (4) 617-628. **7.** Estrada, S. *et al. SKIN* 2020. 4 (6) 506-522. **8.** Goldberg, M. et al. *SKIN* 2021.5 s79.